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Example: cet theory proof

Let A and B be arbitrary sets. Prove that A € g(B) if and only if AN B = A.

What is A?
What ic B 7

o Shaw A=R:
- pove A ep
P VR B p



Example: cet Z‘Aeory ,broaf

Let A and B be arbitrary sets. Prove that A € g(B) if and only if AN B = A.

What ic A?
hat ic B7
W at i 8 Proof 1: We will prove both directions of implication. First, we'll prove that if A € g(B),then ANB =
A. To do so, we'll prove both ANBC Aand ACANB.
Yo Shaw A =5 Let’s begin by showing that A N B € A. To do so, pick any x € A N B. This means in that x € A, and since
. pro ve P\ <R our choice of x was arbitrary, we conclude that A N B C A, as needed.

_—y B c. A_',/>Negu, we’ll show matAg4nB. Consider any x € A. We will prove matngnB. We know A € @(B),
? = \. which means that A € B. Since x € A and A C B, we see that x € B. Then, since x € A and x € B, we see
that x € A N B, as required.

For the other direction of implication, assume that A N B = A. We will prove that A € g@(B). To do so,
we will prove that A € B. So pick any x € A. Thensince x€ Aand A=A N B, we see that x € AN B.
Therefore, we see that x € B. Since our choice of x € A was arbitrary, we see that A C B, as required. Bl



Example: cet theory proof

Let A and B be arbitrary sets. Prove that A € g(B) if and only if AN B = A.
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What ic A?
What ic 8?

Proof 1: We will prove both directions of implication. First, we’ll prove that if A € g(B), then AN B =
A. To do so, we'll prove both ANBC Aand ACANB.

Let’s begin by showing that A N B € A. To do so, pick any x € A N B. This means in that x € A, and since
our choice of x was arbitrary, we conclude that A N B C A, as needed.

Next, we'll show that AC AN B.



Example: cet Z‘Aeory ,broaf

Let A and B be arbitrary sets. Prove that A € g(B) if and only if AN B = A.

Yostaw A CPR -

. Pk YL\ Uy Re A,
' SWAW XeB,

What ic A?
What ic 8?

Proof 1: We will prove both directions of implication. First
A. To do so, we'll prove poth ANBC Aand ACANB.

Let’s begin by showing that A N B € A. To do so, pick gy x € AN B.
our choice of x was arbifrary, we conclude that A N B'C A, as needed.

Next, we’ll show that A'C A N B. Consider any x € A. We will prove that x € A N B. We know A € @(B),
which means that A € B. Since x € A and A C B, we see that x € B. Then, since x € A and x € B, we sce
that x € A N B, as required.

1l prove that if A € go(B),then ANB =

i§ means in that x € A, and since

For the other direction of implication, assume that A N B = A. We will prove that A € g@(B). To do so,
we will prove that A € B. So pick any x € A. Thensince x€ Aand A=A N B, we see that x€ AN B.
Therefore, we see that x € B. Since our choice of x € A was arbitrary, we see that A C B, as required. ll
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B NARY RELATIONS
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Exam,b/e: binary relations ,broaf

If R, is a binary relation over a set A, and R; is a binary relation over a set A,, then an embedding of R,
in R, is a function f : A} — A; such that

Vae€ A).Vbe A,. (aR b © f(a) R, f(b)).
If there’s an embedding of a relation R, in a relation R,, we say that R, can be embedded in R;.

Let R, be a binary relation over a set A; and let R, be a strict order over some set A,.
Prove that if R, can be embedded in R,, then R, is a strict order.

TRRELLEXIVE

Va6, afa What cet is the relation defined over?
we Awamy is ~thaked o Wrself (Where chould we be picking our arbitrary efement from ?)
Proof syap:

Pick w aceh. v aka.



Exam,b/e: binary relations ,broaf

If R, is a binary relation over a set A, and R; is a binary relation over a set A,, then an embedding of R,
in R, is a function f : A} — A; such that

Vae€ A).Vbe A,. (aR b © f(a) R, f(b)).
If there’s an embedding of a relation R, in a relation R,, we say that R, can be embedded in R;.

Let R, be a binary relation over a set A; and let R, be a strict order over some set A,.
Prove that if R, can be embedded in R,, then R, is a strict order.

TRRELLEXIVE

Vae N afa What cet ic the relation defined over?
we Awamy is ~thaked o Wrself (Where chould we be picking our arbitrary efement from ?)
Prool sepvp:

fide w aeh. por aka. Proof 1:Let f: A; — A, be an embedding of R, in Ry. We will show that R, is a strict order by proving

that it is irreflexive and transitive.
First, we’ll show that R, is irreflexive. Consider any a € A;. Since R; is a strict order, we know that R; is

irreflexive, so f(a)R; f(a). Then, since f is an embedding of R, in R,, we see that aR,a, as required.



Exam,b/e: binary relations ,broaf

If R, is a binary relation over a set A, and R; is a binary relation over a set A,, then an embedding of R,
in R, is a function f : A} — A; such that
Vae€ A).Vbe A,. (aR b © f(a) R, f(b)).
If there’s an embedding of a relation R, in a relation R,, we say that R, can be embedded in R;.
Let R, be a binary relation over a set A; and let R, be a strict order over some set A,.
Prove that if R, can be embedded in R,, then R, is a strict order.
TR HINSITIVE
Yae N Yue hVCE

A (aP—b ALRc— ﬂzb)
. What set ic the relation defined over?

s Akd B
e oo Ts vgked 4 b 2 B g o ‘
b o G5 radgkth 4o © (Where chould we be picking our arbitrary elements from?
&%&%iteﬁ cuth Par aARL 24 LEL‘ What ascumptions do we get to make on them?)
pick &l prove ake.

Proof 1:Let f: A} — A, be an embedding of R, in R,. We will show that R is a strict order by proving
that it is irreflexive and transitive.

First, we’ll show that R, is irreflexive. Consider any a € A,. Since R; is a strict order, we know that R, is
irreflexive, so f(a)R, f(a). Then, since f is an embedding of R, in R,, we see that aR,a, as required.



Exam,b/e: binary relations ,broaf

If R, is a binary relation over a set A, and R; is a binary relation over a set A,, then an embedding of R,
in R, is a function f : A} — A; such that

Vae€ A).Vbe A,. (aR b © f(a) R, f(b)).
If there’s an embedding of a relation R, in a relation R,, we say that R, can be embedded in R;.

Let R, be a binary relation over a set A; and let R, be a strict order over some set A,.
Prove that if R, can be embedded in R,, then R, is a strict order.

TR HINSITIVE

A (ap—b/\bac‘_} aEL)

Yae h. Ve h Ve e ey What cet is the relation defined over?

| To vhbed = b * /

m e Ao de ¢ (Where chould we be picking our arbitrary elementc Erom?
gk sabep” h Har ARL a4 bRe What ascomptions do we get to make on them?)

pick A, L eh ot pove aRe.

Proof 1:Let f: A} — A, be an embedding of R, in R,. We will show that R, is a strict order by proving
that it is irreflexive and transitive.

First, we’ll show that R, is irreflexive. Consider any a € A,. Since R; is a strict order, we know that R, is
irreflexive, so f(a)R, f(a). Then, since f is an embedding of R, in R,, we see that aR,a, as required.

Next, we'll show that R, is transitive. To do so, consider any a, b, ¢ € A; where aRb and bRc. Since f is
an embedding of R, in R,, we then see that f(a)R; f(b) and f(b)R; f(c). Then, since R, is a strict order,
it’s transitive, and so f(a)R; f(c). Finally, since f is an embedding of R, in R,, we use the reverse direc-
tion of the implication to conclude that aR)c, as required. l
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Exam,b/e: Function ,bkoa/

Imagine you have a function f : A — B from some set A to some set B. We can use f to construct a new
function called the lift of f, denoted lift;, from g(A) to g(B). Specifically lift; : g(A) — (B) is de-
fined as follows:

lft{S)={y | IxeS. f(x)=y}
Let A and B be sets. Prove that if f: A — B is injective, then lift; is injective.

_:LMMM £arckows A =B
~Noeh Va,eh (a40, —ta,)44a,)) What function are we trying fo prove things about?

Ao rtmt Wnpuks prodvie Afrut orkpots What ic the domain of that fonction?




Example: function proof

Imagine you have a function f : A — B from some set A to some set B. We can use f to construct a new
function called the lift of f, denoted lift;, from g(A) to g(B). Specifically lift; : p(A) — @(B) is de-
fined as follows:

lift(S)={y | IxeS. fx)=y}
Let A and B be sets. Prove that if f: A — B is injective, then lift; is injective.

_:LMMM fackons oA =R
~Noeh Va,eh (a40, — £a,)44a,)) What function are we trying fo prove things about?
Ao rtut Wnpubs  prodved@rrt o rkpots What ic the domain of that function?

Proof 1: Let f : A — B be ailNgjective function. We will provethat lift, is injective as well. To do so,
consider any 8y, S; € §(A) where S; # S,. We will prove that Lift,(S;) # Lift(S,).

Since S, # S, we know that either §; € S; or that S; € S;. Without loss of generality, assume §; € S,
which means that there is some a € S} where a € S,.

First, notice that since a € §;, we see that f(a) € lift/(S;). We now claim that f(a) ¢ lift,(S,). To see this,
suppose for the sake of contradiction that f(a) € S,. This means that there must be some &’ € S, such that
f(@) = f(a). Since f is injective, that tells us that ¢’ = a, and since a’ € S, we see that a € §; as well. But
this is impossible, since we know that a ¢ S;. We've reached a contradiction, so our assumption was
wrong and f(a) € Lift,(S,).

Since f(a) € lift(S;) but f(a) ¢ lift(S;), we see lift(S;) # Lift,(S;), which is what we needed to show. ll
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Example: pigeonhole proof

PlGEovHole . -

-G Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E)is a
P ‘l\ N O p LE l l set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
) the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
Gwrr2l Ayt 16 Y byt e the largest matching in G.
Yrovws P bing , S b ms Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
42 Wkt WAL Mpa AL VR G = (V, E) is a way of coloring each of the edges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
f\“\"“l\w RV AR obfRuts Yy noted %;(G), is the minimum number of colors needed in any edge coloring of G.
_V\,%X ‘\"':\”M Wrio " bns, » w>n J Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
LAl b sk | bl win e ot either %;(G) 2 n+1 or v(G) 2 n+1 (or both).
2 dofarts
g‘”' iz d (0 oy ATEeoke W How do you prove a ctatement of the
BES M v pins, pras 9
* S0 b s 2k Laeh Y}l«{‘ 'c\o}f’d”s form /D or 0
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Example: pigeonhole proof

PlGEovHole . -

-G Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E)is a
P ‘l\ N O p LE l l set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
) the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
Gwrr2l Ayt 16 Y byt e the largest matching in G.
Yrovws P bing , S b ms Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
42 Wkt WAL Mpa AL VR G = (V, E) is a way of coloring each of the edges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
f\‘ ‘\"“l\uf RV AR obfRuts Yy noted %;(G), is the minimum number of colors needed in any edge coloring of G.
_V\EX ‘\‘:\”M Wrio " bns, » w>n J Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
W, sk | bl win e ot either %;(G) 2 n+1 or v(G) 2 n+1 (or both).
L+ 2 oopanks
g‘”' iz d (0 oy ATEeoke W How do you prove a ctatement of the
bt s WMo s, e 1[ ,D 0 9
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Proof: Let G be an arbitrary undirected graph with n°+1 edges for some positive natural number
YW cant hye DNTNIWS n. We will prove that if y;(G) < n, then v(G) 2 n+1.



Example: pigeonhole proof

PlGEovHole . -

-G Let's begin with some new definitions. First, we'll say that a matching in a graph G = (V, E)is a
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Example: pigeonhole proof

Let's begin with some new definitions. First, we'll say that a matching in a graph G=(V, E)is a
set M C E of edges in G such that no two edges in M share an endpoint. The size of a matching is
the number of edges it contains. The matching number of a graph G, denoted v(G), is the size of
the largest matching in G.

Now, let's introduce a variation on a definition we've seen before. A k-edge coloring of a graph
G = (V, E) is a way of coloring each of the gdges in G one of k different colors so that no two
edges that share an endpoint are assigned the same color. The chromatic index of a graph G, de-
noted y,(G), is the minimum number of colors needed in any edge coloring of G.

Let G be an undirected graph with exactly n*+1 edges for some natural number n 2 1. Prove that
either %,(G) 2 n+1 or v(G) 2 n+1 (or both).

What are the pigeons?
What are the holes?

How do you prove a ctatement of the
form P or Q7

Proof: Let G be an arbitrary undirected graph with n°+1 edges for some positive natural number
n. We will prove that if ¥;(G) < n, then v(G) 2 n+1.

Suppose that %;(G) < n. This means that there is an n-edge coloring of the graph G. Since there
are n’+1 edges and n colors, by the generalized pigeonhole principle we know that there must be
at least [ (n*+1) / n1 =[n + /a1 = n+1 edges that are all the same color in the n-edge coloring.
Since all those edges are assigned the same color, we know that no two of them can share an end-
point. Therefore, this set of n+1 edges forms a matching, so v(G) 2 n+1, as required. B
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Example: induction proof

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-
guage
LiL,={wxlweLandxe L, }.
From concatenation, we can define language exponentiation of a language L inductively as fol-
lows:
L’ = {e} L =TLI"

You may find these formal terms helpful in the course of solving this problem.

Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,

that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of
concatenation, language exponentiation, union, and subset in the course of writing up your

What ic P(n)? What ic the bace case?
Build vp or build down? Do we need complete indvction?
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Example: induction proof

Let's begin with a refresher of the key terms and definitions involved. As a reminder, if L, and L,
are languages over an alphabet Z, then the concatenation of L, and L,, denoted L,L,, is the lan-
guage
LiL,={wxlweLandxe L, }.
From concatenation, we can define language exponentiation of a language L inductively as fol-
lows:
L' = {&} L =TLI"

You may find these formal terms helpful in the course of solving this problem.

Let A and B be arbitrary languages over some alphabet Z. Prove, by induction,
that if X = AX U B, then A"B C X for every n € N. Please use the formal definitions of
concatenation, language exponentiation, union, and subset in the course of writing up your
answer.

What ic P(n)? What ic the bace case?
Build vp or build down? Do we need complete indvction?

Proof: Let A and B be arbitrary languages over some alphabet 2 where X = AX U B. Let P(n) be
the statement “A"B € X.” We will prove by induction that P(n) is true for all » € N, from which

the theorem follows.

As our base case, we prove P(0), that A’B € X. Consider any w € A"B. This string must be of the
form xy where x € A" and y € B. Since the only string in A" is €, this means that w = gy = y, so
w € B. Then, since w € B, we know that w € AX U B, and therefore that w € X. Since our choice
of w was arbitrary, this shows that every element of A“B is an element of X, so A’B C X, as re-
quired.

For our inductive step, assume for some arbitrary k € N that P(k) holds and that A*B € X. We will
prove that A*'B € X. To do so, consider any arbitrary w € A**'B. We will prove that w € X.

Since A¥'B = AA*B = A(A*B), we know see that w € A(A*B). Consequently, there exist some x € A
and y € A*B such that w = xy. Since y € A*B, by our inductive hypothesis we see that y € X. Over-
all, this shows that w = xy where x € A and y € X, so we see that w € AX. Since w € AX, we see
that w € AX U B, or equivalently that w € X, as required. Thus P(k+1) is true, completing the in-
duction. l



General ctrategies

Down't panic! You have a fon of mathematical tosle youve been practicing with all quarter. No matter how
daunting the problem may initially seem, I promice if you break it down step by ctep youll find it'c not ac bad
ag it ceems.
Write out everything you know and what youre trying to prove.
- What ic the quantifier on the statement you're trying to prove? What doec that tell you about how
the proof chould be set up?
- What kind of ctructure are you trying to reacon about? [é/uary relations, cets, functions, etc.) You
know how to write proofe about all of these! (Jee proof templatec and formal definitionc to quide you.
- What proof strateqy are you using? What do you get to ascume? IF you're doing an indirect proof,
would it be helpful to write out the statement in FOL and negate it?
Make sure you're using all parte of what'c given to you! (cually there’e a good reason why you need each
agsumption/condition to get the proof to work.
Draw pictvrec! Work backwards! Try a different proof ctmz‘egy./ It’c okay if the firct thing you try doesn't
work, just try comething elce!
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Exam,b/e: DF/’ construction

Let2Z={a, b} andlet L, = { we Z¥ | wdoes not contain bbb as a substring }.

Design a DFA for L,.
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Exam,b/e: DF/’ construction

Let2Z={a, b} andlet L, = { we Z¥ | wdoes not contain bbb as a substring }.
Design a DFA for L,.

DEA Design Tigs
\h—'
T Shapes= pleces of inhrmabida ctatec = ‘how much of the string bbb’ have I ceen?”

S Wit do T bove 4o kerp

FUE Of W Fie. ovse of . . .
’ Bk ik N i~y Here is one possible solution: g’iiné’ ceen b’ ceen b’ ceen bbb’

o W ks lomgvagge 7

- ‘\‘(‘M\"\'fbﬁs = V‘odaﬂhv\‘(ﬂ St ke
L? £ow W gkt Thn wirtly
N, What do £ kpnow 2Uevt Py
S How wotd redivg i
Ward ek hovme vt T kow? 3
This automaton works by advancing forward every time it sees a b and resetting whenever it sees
an a. If it finds three consecutive b’s, it enters a dead state.




Poned Degign Tes EXﬁm/b/e: I/eyex cOngtract;On

- Wik W Sovve Smple Let Z={a,b} andlet L = { w € Z* | w is a nonempty string whose characters alternate between
SHVYS in e e NEL" a's and b's }. Write a regular expression for L.
w4 look AT ok
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Poned Degign Tes EXﬂm/b/e: I/eyex cOngtract;On

- Wik Wf’ S0V’ 59 LetZ={a,b}andlet L = { w€ Z* | w is a nonempty string whose characters alternate between
SYs in e e NEL" a's and b's }. Write a regular expression for L.
w4 look AT ok

’g\f—h T supr ke °U‘\’—\—V\u)
) y MW
Vﬁg :\:‘:‘07 e \ \

5 UNION - S e Starte with a: Starte with b:

PN Lor ah ey
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Example: regex construction

Paned Degign Tips
= 2’3{‘{‘\4" Wf' Sovv L Let Z={a,b}and let L = { w € Z* | w is a nonempty string whose characters alternate between
Vs vt largvooe a'sand b's }. Write a regular expression for L.
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Poned Degign Tes EXﬁm/b/e: I/eyex cOngtract;On

- Wik W Sone L Let Z={a,b} andlet L = { w € Z* | w is a nonempty string whose characters alternate between
SHVYS in e e NEL" a's and b's }. Write a regular expression for L.
w4 look AT ok
T T ke ouk Hne
VIS It o (or work)

e gpries )
5 UNION - Sl e Starte with a:

PN Lor ah ey
PN/~ vndon —\oobu—m

~ tm LT break Anis frw)o% a

dﬁw’n \\(\5‘9 &\4‘ Sore

Sl Sbprob s? b
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Poned Degign Tes EXﬂm/b/e: I/eyex cOngtract;On

- Wiike Wf' Sovv L Let Z={a,b}and let L = { w € Z* | w is a nonempty string whose characters alternate between
%V\{ﬁs e e ST a'sand b's }. Write a regular expression for L.
wd  look PR
“on T e ovtr e
v '.s:—\j(foy_\\,m (or wore)
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P o Wl BT
A~ VRN ‘\"Ogv-\'w

- tm T broak Hnis problum, 2 b
donn W sl Govre
sl 2bproblims? ab ba
5 ANCATENNTI ON - _ aba bab
i Ao g Fo0 Lol
PR/ prolim, P abab baba
U7 Okaape e gpbas ababa babab
-1 P o
o o 2 rh
L vleene sThR -
fvad Swal st alba)*6? U blab)*a?

ReLvy unit, e,
St Ame ok



M\IHHJL \\JER,OBG - Shw»\fnj \M«’udts Ut Wot v~¢3V|Ml_
Gl 14230 wan- \ = prolaws 4ok ot B SR W/ Luie e
429" Wen—rti) s ?/V‘aﬂ%’:r «\—(: Y N P S | g Y

TSN need 4o vamm
® dz¢\w;w Ao ravatvmlors inkingethy Whamey BhgC ok v BT b (el ittt

Lo 1¢ \
ms_\st}\’\(‘\-&&, Bo ongiane 1 Qm\m/b\,\{ Itk sl

Proot strecture -
SEod dn pakmie Stk S svon At fair S Eniiess e dEkiegdisnlls, eElohvtdn L
A A IS i R ey
W each SHMY PLertsamt oAU b e BN s possibllies
- Prons T—\-\./a\- Hase stvgs ue didtvnguiskable relptive to i \2revae e
- ?;\c\\t—bJ\—w: U bikrary Y £om S 2d shiew rheys Arstiguishy (.
C ek 4o e Ak inctivn e L 25 WALLSSAY - Saveetiaag g 9"""’“"‘57 5.\—ﬁ\43 is 'w\/v\o{- ™ >

V8200, s won ~dly (v
- Lo LlvAL e \MJ'B% s van-rtguly by MWl Neasdy




Example: /Myh///—/l/eraa/e proof

Let 2 = {a, b}. Consider the following language L, over Z:
Ly={ab"ImneNand m <2n }

For example, aa € L, aab € L, aabb € L,, aabbb € L,, and aabbbb € L,, but aabbbbb ¢ L,.
Prove that L, is not a regular language.

@\AM\- do Yo rexd to vt Yo desrmive {5 a2 g {5 ™ Hee lwgra%,g?
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Example: M yhi//-/l/eraa/e proof

Let 2 = {a, b}. Consider the following language L, over Z:
Ly={ab"ImneNandm<2n}
For example, aa € L, aab € L, aabb € L,, aabbb € L,, and aabbbb € L,, but aabbbbb ¢ L,.
Prove that L, is not a regular language.

@\AM\- 4o Yov reed Fo vevmembd Yo desrmive {5 a2 g {5 ™ Hee lwgra%?

Proof stoeture We need to remember how many
SEd An kMR Sk S osvon b vy poir of SHs s Mehguishalle lghwve o L , . .
ot Ak S e (B) v help £nd Ahis seb! e lvpage  AC Are in the string (to encure
Wt each SHM VoM smml oA bR dig B! oss/LIl .
o Mpmily Wy possibildie that the number of b'e ic at most

- fW’NP;\:V‘_/a\;V-\:aS:b?H\VSS ut (1!'}\‘\\/‘-5\)'\5\'\/35\2, relbve o Y \2%\,7%
2y W“/‘)S +om S »d Shaw —\—‘v\u"ﬂ. A

N back b0 pe dekindtivn bR L 29 vaCLsSuY - S . —\-\hﬁ"':sl‘llkb . )
VW20, (s won -ty sy TSNS Sy s sy s infrot a3

twice the number of a’c)

Proof:Let S={ a" | n € N }. The set S is infinite because it contains one string for each natural
number. Now, consider any two strings a", 3" € §. Without loss of generality, assume that n < m.
Now, consider the strings a"b*" and a™b*". The string a"b*" is not in L, because 2m > 2n, so there
are too many b's in the string for it to be in L,. On the other hand, the string a”b*" is in L because
the number of b's is precisely twice the number of a's. Therefore, we see that a" #., a™. Since our
choices of a" and a” were arbitrary, we therefore see that any two distinct strings in S are distin-
guishable relative to L,. Therefore, since S is infinite, by the Myhill-Nerode theorem we see that

L, is not regular. B



é?&ﬂﬁfgiﬁ% EXﬁm,b/e-‘ CFG construction

Brsign Tips Let 2 = {a, b} and consider the following language Ls over Z:
- ;%’jﬁsb‘\’j“\’i"“\” 2 mple L={weZ* | Iwl =30 and all the characters in the first third of w are the same }
) \ \J
SN AN Here, aababa € Ls, bbbaaaaaa € Ls, 2aa € Ls, and ¢ € Ls, but abbbbb ¢ Ls and aaaaa ¢ Ls. (For
N e convenience, I've underlined the first third of the characters in each string.)
Pexe \omgy 202 Wit Write a context-free grammar for L.
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Exam,b/e: CFﬁ constlruction

Let 2 = {a, b} and consider the following language Ls over Z:
L={weZ* | Iwl =30 and all the characters in the first third of w are the same }

Here, aababa € Ls, bbbaaaaaa € Ls, aaa € Ls, and € € Ls, but abbbbb ¢ Ls and aaaaa ¢ Ls. (For
convenience, I've underlined the first third of the characters in each string.)

Write a context-free grammar for L.

First third is a'e: First third is be:

abb bab

aababa bbabbb

asana. bbbasnanaa
t aaa bbbbabbaa.

v
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Exam,b/e: CFﬁ constlruction

t

Let 2 = {a, b} and consider the following language Ls over Z:
L={weZ* | Iwl =30 and all the characters in the first third of w are the same }

Here, aababa € Ls, bbbaaaaaa € Ls, aaa € Ls, and € € Ls, but abbbbb ¢ Ls and aaaaa ¢ Ls. (For
convenience, I've underlined the first third of the characters in each string.)

Write a context-free grammar for L.

Firet third i a'e:

abb
aababa
aaanna.

aaa

\ For every a in the firet third, I need two other characters
in the last two thirde



é?&ﬂﬁfgiﬁ% EXﬁm,b/e-‘ CFG construction

Brsign Tips Let 2 = {a, b} and consider the following language Ls over Z:
T Wik avt v aumple L={weZ* | Iwl =30 and all the characters in the first third of w are the same }

5“"\*’"55 ™M e \’2/\»—3\12%52,
"k vRerE My - g Here, agbaba € Ls, bbbaaaaaa € Ls, 3aa € Ls, and € € Ls, but abbbbb ¢ Ls and aaaaa ¢ Ls. (For

MY £ Sunslles skvys convenience, I've underlined the first third of the characters in each string.)

\OL’\M’ \"””‘3"2%1 wirthaia Write a context-free grammar for L.
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CONTEXT FREC Exam/b/e: CFG construction

GEAMMARS
Brsign Tips Let 2 = {a, b} and consider the following language Ls over Z:
- &(‘\fﬁsb‘\’j“\’i"“\” 2 mple L={weZ* | Iwl =30 and all the characters in the first third of w are the same }
) \ \J
SN AN Here, aababa € Ls, bbbaaaaaa € Ls, aaa € Ls, and € € Ls, but abbbbb ¢ Ls and aaaaa ¢ Ls. (For
MY £ g, I\:j skvys convenience, I've underlined the first third of the characters in each string.)
\"; ;‘;‘; ‘?/:\4—5@%1 Wit Write a context-free grammar for L.
STyS ¢
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LT vl RVt

Q‘}{—\sx N A sty One possibility is
os—*“”;*ﬁ%”if S—>AIB
'Y
z&"‘("/"\f\}\—c\ﬂ vp wirhh Ovne A—-aAXXle
WU vt e be B —bBXX e

VAT SN Fiwe
) E&? —EwmMals Shaany AT A
\ AT AL 5‘\-?%.(‘5/_‘)1?&5 of : = . ; .
ST Mg s The nonterminal A generates strings of the form a"2* and the nonterminal B generates strings of
Ly 2. Ay mt prises He the form b"Z* , so overall the grammar generates all and only the strings in L.
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